Sub-daily Variation of Ocean Surface Wind and Stress

W. Timothy Liu and Wenqing Tang Jet Propulsion Laboratory, California Institute of Technology

Perspective

 Current knowledge is based on moorings, with limited geographical coverage [Deser and Smith, 1998]

 Spacebased data may extend it to global coverage

•A polar-orbiting scatterometer can sample at one location only twice a day.

•NASA tandem scatterometer missions (QuikSCAT and ADEOS-II) provide 4 views a day to study diurnal variations over the ocean [Liu and Tang, 2004; Gille et al., 2005]

 3 to 4 wind sensors have operated together for various periods and are used to improve our knowledge of the diurnal and sub-daily variations over open oceans

Diurnal variability measured by TAO buoy (8S,179W) 0.4 0.2 (s/w) N 0.0 -0. -0.4 10 15 Winds/NASA QuikSCAT OceanSat-2 ASCAT e 19, 1999-Nov. 23, 2<mark>009</mark> 0.2 V (m/s) 0.0 -0.2 -0.4 -0.6 5 10 15 Local time of satellite passing

ndSAT/NPOESS Coriolis n.6, 2003-present

ASCAT/EUMETSAT Met **Oct. 19, 2006-present**

20

20

OceanSAT-2/ISRO Sep. 23, 2009-prese

July 19, 1999	QuikS	CAT Nov. 23, 2009		
	Mar. 28	,	ASCAT	present
	2007			
	2006	14/1-	JEAT	
Jan., 1,	2006	VII	IOSA I	present
	ſ	lov. 5, 200 9cean	SATA pr. 30, 2010	
		2009309- 2009325 Co-existing period		

ikSCAT 2009 309-325

Mean

T-test with 70% significance

Meridional WInd

Zonal Wind

ndSAT 2009 309-325

Zonal WInd

Meridional WInd

Mean

T-test with 70% significance

CAT 2009 309-325

Mean

T-test with 70% significance

Meridional WInd

Zonal WInd

eanSAT-2 2009 309-325

Zonal WInd

Meridional WInd

T-test with 70% significance

F (along OceanSAT-2 swath) 2009 309-325

T-test with 70% significance

Zonal Wind

Zonal Wind

Meridional WInd

Zonal WInd

Meridional WInd

Zonal WInd

Meridional WInd

Differences between OceanSat-2 and QuikSCAT measurements averaged over the two weeks of coincidence for zonal

Significant (90%) difference observed in tropical oceans, where strong diurnal variability of ocean wind were

OceanSAT-2 - ASCAT

QuikSCAT - ASCAT

ASCAT: U & V means averaged over two weeks period (Nov. 5-21, 2009)

Fitting

The temporal means of 3 sensors at two overpasses (6 values)are used to derive diurnal/semidiurnal cycles at each location.

The zonal and meridional components are fitted to a second order harmonic function to obtain the amplitude (A1, A2) and phase (p1, p2) of the diurnal and semidiurnal cycles,

 $F(x,t) = A_1 sin(x+p_1) + A_2 sin(2x+p_2)$ where x = $\pi t/12$, and t is the local time (0-24 hour)

Uncertainties are derived using stardard errors and random noises

Uncertainty estimated via Monte Carlo simulation

(1) Perturb the original 6 data values by adding random numbers with a Gaussian distribution and a variance equivalent to the standard error of measurements; and re-derive A_1 , p_1 and A_2 , p_2 ;

(2) Repeat (1) 100 times for the Monte Carlo simulation of uncertainty analysis;

(3) Uncertainties of A_1 , p_1 and A_2 , p_2 are determined from the standard deviation of the 100 realizations, i.e. the uncertainty of A_1 is the standard deviation of 100 A computed

de (A1) of the diurnal cycle of Zonal Wind (where A1

OceanSAT2(0,12)+ASCAT(9,21)+ WindSAT(6,18)

OceanSAT2(0,12)+ASCAT(9,21) +QSCAT(6,18)

QSCAT(6,18)+ASCAT(9,21)+ 'WindSAT(6,18)

QSCAT+ASCAT+WindSAT+Oc eanSAT2

(A2) of the semi-diurnal cycle of Zonal Wind (where

OceanSAT2(0,12)+ASCAT(9,21)+ WindSAT(6,18)

OceanSAT2(0,12)+ASCAT(9,21) +QSCAT(6,18)

QSCAT(6,18)+ASCAT(9,21)+ 'WindSAT(6,18)

QSCAT+ASCAT+WindSAT+Oc eanSAT2

de (A1) of the diurnal cycle of <mark>Meridional Wind</mark> (where

OceanSAT2(0,12)+ASCAT(9,21)+ WindSAT(6,18)

OceanSAT2(0,12)+ASCAT(9,21) +QSCAT(6,18)

QSCAT(6,18)+ASCAT(9,21)+ 'WindSAT(6,18)

QSCAT+ASCAT+WindSAT+Oc eanSAT2

(A2) of the semi-diurnal cycle of Merid. Wind (where

OceanSAT2(0,12)+ASCAT(9,21)+ WindSAT(6,18)

OceanSAT2(0,12)+ASCAT(9,21) +QSCAT(6,18)

QSCAT(6,18)+ASCAT(9,21)+ 'WindSAT(6,18)

QSCAT+ASCAT+WindSAT+Oc eanSAT2

ak time of the zonal Wind diurnal cycle in summer an

-40

-20

0

Latitude

20

40

QSCAT+ASCAT+WindSAT

ak time of the merid. Wind diurnal cycle in summer a

8. 6. 4

2.

Summary

Significant regional day and night difference in scatterometer data

Extend our knowledge of diurnal and sub-daily variation from mooring locations To open ocean

On –going effort to relate the high frequency variation to those of other atmospheric and oceanic parameters

Future optimal spacing of satellite orbit will help avoid aliasing of subdaily variation into climate record.

backup

Zonal WInd

Meridional WInd

Zonal WInd

Meridional WInd

nase (T1_{max}) of the diurnal cycle of <mark>Zonal Wind</mark> (A1 > 2

OceanSAT2(0,12)+ASCAT(9,21)+ 3QSCAT(6,18)+ASCAT(9,21)+ WindSAT(6,18) 3WindSAT(6,18)

22.

20.

18.

16.

14.

12.

10.

8.

6. 4. 2. 0.

OceanSAT2(0,12)+ASCAT(9,21) +QSCAT(6,18)

QSCAT+ASCAT+WindSAT+Oc eanSAT2

2_{max}) of the semi-diurnal cycle of **Zonal Wind** (where A

OceanSAT2(0,12)+ASCAT(9,21)+ 3QSCAT(6,18)+ASCAT(9,21)+ **WindSAT(6,18)** 'WindSAT(6,18)

8.

6.

4.

2.

0

OceanSAT2(0,12)+ASCAT(9,21) +QSCAT(6,18)

QSCAT+ASCAT+WindSAT+Oc eanSAT2

¹, of the diurnal cycle of Meridional Wind (where **A**

OceanSAT2(0,12)+ASCAT(9,21)+ 3QSCAT(6,18)+ASCAT(9,21)+ **WindSAT(6,18)** 'WindSAT(6,18)

16.

8.

6.

4. 2. 0.

OceanSAT2(0,12)+ASCAT(9,21) +QSCAT(6,18)

QSCAT+ASCAT+WindSAT+Oc eanSAT2

a_{max}) of the semi-diurnal cycle of Merid. Wind (where A

OceanSAT2(0,12)+ASCAT(9,21)+ 3QSCAT(6,18)+ASCAT(9,21)+ WindSAT(6,18) 'WindSAT(6,18)

2.

OceanSAT2(0,12)+ASCAT(9,21) +QSCAT(6,18)

QSCAT+ASCAT+WindSAT+Oc eanSAT2

nal cycle derived from SeaWinds tandem mission compared wit

.ocal peak time of meridional wind (QS/SW)

ocal peak time of meridional wind (ECMWF)

OceanSAT-2 - QuikSCAT

QuikSCAT day-night difference

OceanSAT-2 day-night difference

ASCAT day-night difference

ECMWF day-night difference

(along OceanSAT-2 swath)